Homogeneity in donkey sentences Handout with key formulae

Lucas Champollion, champollion@nyu.edu

SALT 26, May 12-15, 2016

Full slide set available at champollion.com/2016_salt_presentation.pdf

Pragmatics

The Current Issue (\approx QUD): a salient question that gives rise to an equivalence relation " \approx " on worlds. $w \approx w$ ' means that w and w ' agree on the current issue.

Sentence S is judged true at wo iff it is "true enough":

- that is, if S is True (at w_{0}), or
- if S is Neither at w_{0}, True at some $w \approx w_{0}$, and not False at any $w^{\prime} \approx w_{0}$

Otherwise, S is judged false.

Semantics

1. farmer $\rightarrow \lambda v$. $\lambda \mid \lambda \mathrm{O}$. $\mathrm{I}=\mathrm{O} \wedge \forall \mathrm{i} \in \mathrm{I}$. farmer(i(v))

Shorthand: λv. [farmer\{v\}]
2. beats $\rightarrow \lambda v \lambda v^{\prime} . \lambda \mid \lambda \mathrm{O}$. $\mathrm{I}=\mathrm{O} \wedge \forall \mathrm{i} \in \mathrm{I}$. beats $\left(i(v), i\left(v^{\prime}\right)\right)$

Shorthand: $\lambda v \lambda v^{\prime}$. [beats $\left\{v, v^{\prime}\right\}$]
3. A condition is a test on an input state: $\lambda \mathrm{I}$...
A. Atomic predicates: $R\{u\}=$ def $\lambda I . \forall i \in I . R(i(u))$
4. A DRS relates input to output states: $\lambda \mid \lambda O$...
A. Lifting a condition C into a $\mathrm{DRS}:[C]=\operatorname{def} \lambda I \lambda \mathrm{O} . \mathrm{C}(\mathrm{I}) \wedge \mathrm{I}=\mathrm{O}$
B. Random and targeted assignments of discourse referents:
$[u]=$ def $\lambda l \lambda 0$. $\forall i \in I \exists 0 \in \mathrm{O}$. $\mathrm{i}[u] \mathrm{o} \wedge \forall 0 \in \mathrm{O} \exists \mathrm{\Xi i} \in \mathrm{l}$. $\mathrm{i}[u] \mathrm{o}$
$u:=x=\operatorname{def} \lambda \mid \lambda O$. $[u](1)(O) \wedge \forall 0 \in O$. $o(u)=x$
5. succeeds($\mathrm{D}, \mathrm{I})=\operatorname{def} \exists \mathrm{O} \neq \varepsilon$. $\mathrm{D}(\mathrm{l})(\mathrm{O})$
D transitions to some non-error state
6. fails(D,I) $=\operatorname{def}\urcorner \exists \mathrm{O}$. $\mathrm{D}(\mathrm{I})(\mathrm{O})$
D does not transition to any output state
7. $\operatorname{error}(\mathrm{D}, \mathrm{I})=\operatorname{def} \exists \mathrm{O} . \mathrm{D}(\mathrm{I})(\mathrm{O}) \wedge \forall \mathrm{O} .(\mathrm{D}(\mathrm{I})(\mathrm{O}) \rightarrow \mathrm{O}=\varepsilon)$

D only transitions to error states
8. DRS negation checks that a DRS fails on any nonempty substate of the input state:
$\sim D=\operatorname{def} \lambda l . \forall H \neq \varepsilon . H \subseteq I \rightarrow$ fails(D,H)
9. DRS disjunction checks that at least one of the disjuncts succeeds:
$\mathrm{D} \mid \mathrm{D}$ ' $=$ def λl. succeeds $(\mathrm{D}, \mathrm{I}) \vee$ succeeds($\left.\mathrm{D}^{\prime}, \mathrm{I}\right)$
10. DRS conjunction: apply the two DRSs in sequence

D ; D' =def $\lambda \lambda \lambda \mathrm{O} . \exists \mathrm{H} . \mathrm{D}(\mathrm{I})(\mathrm{H}) \wedge \mathrm{D}^{\prime}(\mathrm{H})(\mathrm{O})$
11. Maximalization: store as many different entities under column u as possible as long as D returns an output
$\max _{u}(\mathrm{D})=$ def $\lambda I \lambda \mathrm{O} .(\mathrm{l}=\mathrm{O}=\varepsilon) \vee([\mathrm{u}] ; \mathrm{D})(\mathrm{I})(\mathrm{O}) \wedge \forall \mathrm{K} .([u] ; \mathrm{D})(\mathrm{l})(\mathrm{K}) \rightarrow \mathrm{uK} \subseteq \mathrm{uJ}$ where $u K=\operatorname{def}\{x$: there is an i in K such that $x=i(u)\}$
12. uniformTest $(D)=\operatorname{def} \lambda l$. ($D \mid[\sim D])$
13. uniform $(D)=\operatorname{def} \lambda I \lambda O$. (uniformTest $(D)(I) \wedge I=O) \vee(\neg u n i f o r m T e s t(D)(I) \wedge O=\varepsilon)$
14. itu2 $\rightarrow \lambda P$. uniform $\left(P\left(u_{2}\right)\right) ; P\left(u_{2}\right)$
15. brays $\rightarrow \lambda \mathrm{v}$. brays\{v\}
16. Lift(ituz) $\rightarrow \lambda R \lambda v$. uniform $\left(R\left(u_{2}\right)(v)\right) ; R\left(u_{2}\right)(v)$
17. beats $\rightarrow \lambda v^{\prime} \lambda v$. beats $\left\{v, v^{\prime}\right\}$
18. every ${ }_{u}=$ def $\lambda D \lambda D^{\prime} \lambda I \lambda O$.
($\mathrm{O}=\mathrm{I} \wedge \forall \mathrm{x}$. (succeeds(u:=x ; D)(I) \rightarrow succeeds(u:=x ; D ; D’)(I)))
v
$(\mathrm{O}=\varepsilon \wedge \neg \forall \mathrm{x}$. (succeeds(u:=x ; D)(I) \rightarrow succeeds(u:=x ; D ; D')(l)) ^
\wedge ョx. (succeeds(u:=x; D)(I) ^ fails(u:=x ; D ; D')(I)))

