Dependent indefinites – the view from sign language

Jeremy Kuhn • Institut Jean Nicod, CNRS, Ecole Normale Supérieure

Semantics and Linguistic Theory 26, May 15, 2016

Paper: www.semanticsarchive.net/Archive/jYxMzJkN/

1 Overview

- In natural language, **indefinites** introduce individuals into the discourse context.
 - (1) I read <u>a</u> book. (It was interesting.)
 - (2) I read <u>three</u> books. (They were interesting.)
- In many languages, indefinites may be inflected to create a **dependent indefinite**.
 - Indicates that the value of the DP varies w.r.t. something else in the sentence or context.

(3) **Telugu** (Balusu 2006)

pilla-lu <u>renDu-renDu</u> kootu-lu-ni cuus-ee-ru. kids two-two monkey-Pl-Acc see-Past-3PPL '(The) kids saw two monkeys each.'

- (4) ASLBOYS IX-arc-a READ <u>ONE-arc-a</u> BOOK.'The boys read one book *each*.'
- Distributive meaning: two monkeys per kid; one book per boy

Questions for today

- 1. What is the relation between a dependent term and its licensor? (Anaphoric or indirect?)
- 2. Does the distributive meaning reside in the dependent indefinite itself, or is it parasitic on a (possibly covert) distributivity operator elsewhere in the sentence?
- 3. (How does a dependent indefinite 'see outside' the scope of a distributive operator?)

The point of view from sign language

- Dependent indefinites in ASL fit into a broader typology:
 - interpretation
 - licensing conditions
 - even morphological marking via reduplication
- Additionally, ASL pattern employs the use of space.
 - 1. Overt representation of the relation between a dependent indefinite and its licensor.
 - * Anaphoric!
 - 2. Spatial marking of dependency also appears on the adjectives SAME and DIFFERENT.
 - * Intrinsically distributive!
- Consequences for recent theories of dependent indefinites.

2 Visible dependency

- The meaning of dependent indefinites can be characterized by a variation condition:
 - the value taken by the dependent indefinite varies with the atoms of the plural licensor.
- The variation condition can be seen in the fact that collective readings become unavailable with dependent indefinites.
- (5) a. ALL BOY LIFT ONE TABLE. √collective √distributive
 b. ALL BOY LIFT ONE-arc TABLE. * collective √distributive
 'All the boys lifted a table.'

The use of space in ASL

• Singular individuals indexed at points in space.

(Lillo-Martin and Klima 1990, *i.a.*)

• Plurals are indexed over areas of space.

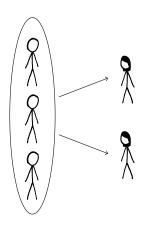
singular locus

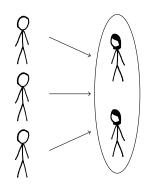
plural locus

A spatial representation of dependency:

- Dependent indefinites are obligatorily signed over the same area of space as their licensor.
 - (6) EACH-a PROFESSOR SAID ONE-arc-a STUDENT WILL RECEIVE B. 'Each professor said that one student will receive a B.'
 - (7) ?? EACH-a PROFESSOR SAID ONE-arc-b STUDENT WILL RECEIVE B.
 'Each professor said that one student *from each salient group* will receive a B.'

Removing ambiguity in ASL


• Since the arc-motion agrees with licensor, can specify what the indefinite is dependent on.


b.

- Consider a sentence with two potential licensors.
 - (8) Hungarian (p.c. Dániel Szeredi; four speakers)

A fiúk <u>két-két</u> könyvet adtak a lányoknak. The boys two-two book give.3Pl the girls 'The boys gave the girls two books each.'

- Judgement: 'two-two' can depend on either boys or girls.
 - a. Distribution across the girls.'To Mary, from the boys'
- Distribution across the boys. 'To the girls, from John.'

- With the use of space, ASL can disambiguate!
 - (9) ALL-a BOY-a GAVE ALL-b GIRL-b <u>ONE-arc-b</u> BOOK.'All the boys gave all the girls one book *per girl*.'
 - Reading (b), with distribution across the boys, is *not possible*.

Theoretical import

- Debate in the literature: what is the relation between a dependent term and its licensor?
- Two sides:

Anaphoric link (like pronouns)	Indirect relation (like NPIs)
Brasoveanu & Farkas 2011	Balusu 2006
Brasoveanu 2011 (different)	Henderson 2014
Barker 2007 (same)	Cable 2014

• New conclusion: the ASL data is overtly anaphoric.

3 A compositional puzzle: whence the distributive force?

A licensing puzzle

- A key property: licensing
- In many languages, dependent indefinites are...
 - ...licensed by plurals,
 - ...licensed by distributive operators,
 - ...ungrammatical when all arguments are singular.
- This holds in some form in...
 - Kaqchikel (Henderson 2014), Hungarian (Farkas 1997), Romanian (Brasoveanu & Farkas 2011), Albanian (Rushiti 2015), Telugu (Balusu 2006), some dialects of English (Champollion 2015a), and ASL (this work).

Licensing examples

- (10) Kaqchikel Mayan (Henderson 2014)
 - a. Xeqatij <u>ox-ox</u> wäy. we-eat three-three tortilla 'We each ate three tortillas.'
 - b. Chikijujunal ri tijoxela' xkiq'etej ju-jun tz'i'. each the students hugged one-one dog 'Each of the students hugged a dog.'
 - c. * Xe'inchäp <u>ox-ox</u> wäy.
 I-handle three-three tortilla
 Desired reading: 'I took (groups of) three tortillas.'

(11) **Telugu** (Balusu 2006)

- a. Pilla-lu <u>renDu-renDu</u> kootuluni cuuseeru kid-Pl two-two monkeys saw
 '(The) kids saw two monkeys each.' *Two readings: 'participant key' and 'temporal key.*'
- b. Prati pillavaaDu <u>renDu-renDu</u> kootuluni cuuseeDu Every kid two-two monkeys saw 'Every kid saw two monkeys (each).' *Two readings: 'participant key' and 'temporal key.*'
- c. Raamu <u>renDu-renDu</u> kootuluni cuuseeDu Ram two-two monkeys saw
 'Ram saw two monkeys each.' Only 'temporal key' reading.

(12) Albanian (Rushiti 2015)

- a. Fëmijët kanë parë nga pesë mace. children-the have seen DIST five cats 'The children have seen five cats each'
- Në çdo dhomë kishte nga dy fotografi.
 in every room there-were DIST two photos
 'There were two (different) photos in each room'
- c. * Në dhomë kishte nga dy fotografi.
 in room there-were DIST two photos
 Desired reading: 'There were two (different) photos in the room.'

(13) English

- a. The boys saw two zebras <u>each</u>.
- b. % Every job candidate was in the room for fifteen minutes each.
- c. * Ariella saw two zebras each.

American Sign Language fits in perfectly:

- (14) **ASL**
 - a. BOYS IX-arc-a READ <u>ONE-arc-a</u> BOOK. 'The boys read one book each.'
 - b. EACH-EACH-a PROFESSOR NOMINATE <u>ONE-redup-a</u> STUDENT. 'Each professor nominated one student.'
 - c. * JOHN-a READ <u>ONE-arc-a</u> BOOK. *Desired reading:* 'John read one book.'

A compositional puzzle

• Quantifiers like English *every* distribute down to atomic parts.

(15) English

(16) **ASL**

- a. The boys gathered.
- b. * Every boy gathered.
- c. * Edith gathered.

a. MY FRIENDS, IX-arc-a GATHER. 'My friends gathered.'

- b. * EACH STUDENT MY CLASS GATHER. 'Each student in my class gathered.'
- c. * JOHN GATHER. 'John gathered.'

A compositional puzzle

- Dependent indefinites under distributive operators seem to be puzzlingly redundant (e.g. Balusu 2006, Oh 2005).
 - With a plural licensor, they seem to contribute distributive force themselves.
 - Under distributive operators, they appear to be semantically vacuous.
- If there are cases in which they are semantically vacuous, then why can't they appear innocently under singular subjects?

Two possible directions

Option 1: Treat licensing by distributives as the 'base case.'

(Brasoveanu and Farkas 2011, Henderson 2014)

- The at-issue meaning of a dependent indefinite is equivalent to that of a plain indefinite.
- A syntactic or semantic constraint (e.g. 'distributive concord') requires the indefinite to scope under a distributive operator.
- Licensing by plurals arises via a covert distributivity operator.
 - (17) The boys DIST [saw two-two zebras].

Option 2: Treat licensing by plurals as the 'base case.' (Balusu 2006, Cable 2014)

- The at-issue meaning of a dependent indefinite is itself quantificational/distributive.
 - (18) [[two-two books]] = Given a licensor X, presupposing that X is nonatomic, ∀ atomic parts x of X, there are two books associated with x

- For distributive operators:
 - The dependent indefinite is able to 'escape' from the distributive scope, to get access to a higher plurality.
 - This plurality is made available by the compositional system.

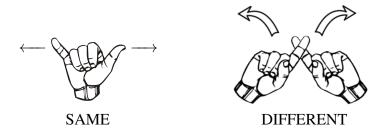
A problem for Option 1

(Option 1 = plural licensors require a covert distributivity operator)

- Distributive operators generally assumed to appear over VP.
- However, dependent indefinites may be conjoined with plain indefinites that are interpreted cumulatively.
- (19) Hungarian (p.c. Dániel Szeredi)

A diákok két előételt és **egy-egy** főételt rendeltek. The students two appetizers and one-one main-dish ordered. 'The students ordered two appetizers in total, and as many main dishes as students'

(20) Tamil (Chennai dialect) (p.c. Anushree Sengupta)


Mānavarkkal thankalai kaga **oru-oru** appetizer o irenDu desserts share-panna order pannagu. students themselves for one-one appetizer and two desserts share-do order did 'The students ordered one appetizer each for themselves and two desserts to share.'

• If the dependent indefinite scopes under a covert distributive operator, the plain indefinite must do so, too, incorrectly entailing twice as many appetizers as students.

Support for Option 2

(Option 2 = dependent indefinites are themselves distributive)

- **Observation:** English *same* shows the same distributional pattern as dependent indefinites
- (21) English *same* (on internal reading):
 - a. The students gave the same answer.
 - b. Each student gave the same answer.
 - c. * Edith gave the same answer.
 - **Observation:** in ASL, dependent indefinites, SAME, and DIFFERENT are morphologically unified.

- SAME/DIFFERENT show the same pattern of spatial agreement.
 - (22) BOY THEY-<u>arc-a</u> READ {ONE/SAME/DIFFERENT}-<u>arc-a</u> BOOK. 'The boys read {one book each/the same book/different books}.'
- Like for dependent indefinites, ASL may remove ambiguity with multiple licensors.
 - (23) Every boy gave every girl the same book.
 - a. *Reading 1:* unimaginative boys
 - b. *Reading 2:* unlucky girls
 - (24) Every boy gave every girl a different book.

(Bumford and Barker 2013)

- (25) BOYS IX-arc-a EACH GIVE-alt-b ALL-b GIRL-b <u>SAME-arc-b</u> BOOK.
 - Only 'Reading 1': same with respect to the girls.

Theoretical conclusion: Dependent indefinites and the adjectives *same* and *different* should be treated in fundamentally the same way.

- Consider the meaning of *same*.
 - (26) Each student lifted the same table.
- A different table-lifting for each boy; in this sense, variation with respect to the licensor.
- But of course, this is not all; *same* compares the tables lifted by each boy.
 - For each pair of boys, they lifted the same table.
- This meaning is inherently quantificational.

Thus...

- *Same* must be given inherently quantificational meaning.
- Morphological parallels in ASL suggest that dependent indefinites should be treated analogously.

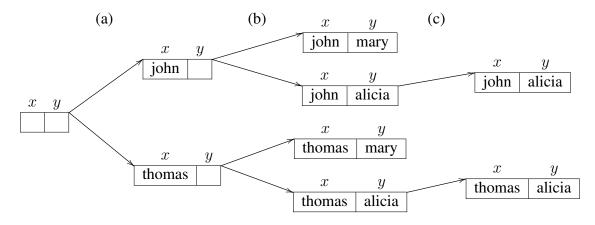
The proposal in a nutshell

- Dependent indefinites introduce a plurality into a discourse.
- Two components of meaning:
 - **Presupposition:** the plurality can be divided into subpluralities that vary with respect to the atoms of a licensor.
 - At-issue: each of these subpluralities is of a given cardinality.
- Licensing by *each* is achieved by QR of the dependent indefinite, letting it scope outside the distributive operator.
 - Critically, the framework of **Plural Compositional DRT** allows the semantics to make reference to the functional dependency even outside of the distributive scope.

4 Introducing Plural Compositonal DRT

Background: dynamic semantics

• **Dynamic semantics:** discourse referents represented as the values of an assignment function, *g* (essentially, a list).


$$g = \boxed{\begin{array}{c|c} x & y & z \\ \hline \text{john} & \text{mary} \end{array}} \cdots$$

(Groenendijk & Stokhof 1991)

- Passed through discourse: the output context of one sentence is the input context of the next.
- Indefinites add new individuals to the list. Pronouns retrieve elements from the list

Standard dynamic semantics, an example

(27) (a) A^x boy entered. (b) A^y girl exited. (c) She_y was angry.

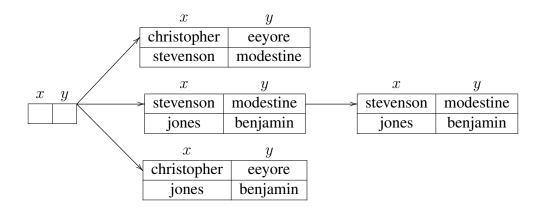
Universals in dynamic semantics

Standard dynamic semantics:

- Universals *every* and *each* taken to be 'externally static.'
 - Indefinites in their scope are not available to later discourse.
- At a first approximation, this seems to be correct:
 - (28) * Every^x farmer owns a^y donkey. It_y kicked me in the shin.
- But...

Quantificational subordination (Heim 1990, Brasoveanu 2006)

- (29) Two^x farmers each own a^y donkey. Neither of them_x treat it_y very well.
- The pronoun *it* is anaphoric to the indefinite *a donkey*, yet it doesn't refer to a particular donkey or to the set of all donkeys.
 - It picks out the same correspondence that was introduced by the first sentence.


Dynamic Plural Logic; Plural Compositional DRT

(van den Berg 1996, Nouwen 2003, Brasoveanu 2006)

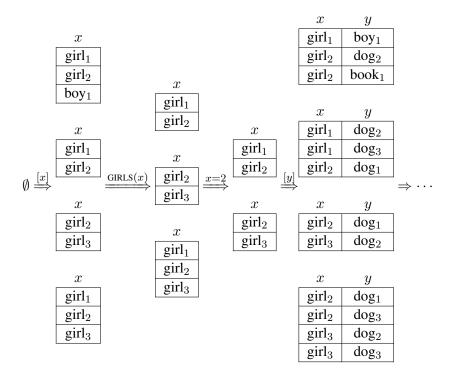
- We need to be able to 're-open' the scope of a universal.
- Instead of just *checking* that there is one donkey per farmer, the system must *store* this representation.
- Instead of passing assignment functions through the discourse, it passes *sets* of assignment functions.

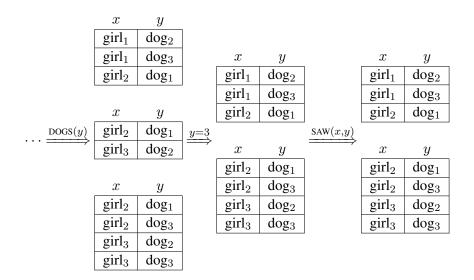
—	G =	x	y	
		christopher	eeyore	
		jones	benjamin	

- G, H are variables over these 'information states' (i.e. tables).
- (30) Two^x farmers each own a^y donkey. Neither of them_x treat it_y very well.

System summary

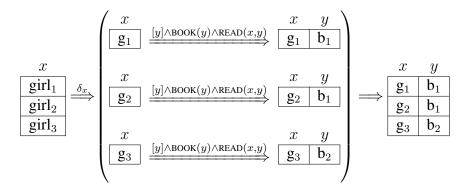
• I adopt the Plural Compositional DRT of Brasoveanu 2006; full definitions in Appendix A.


Informally, ...


- [x] introduces individuals across G at index x.
- Predicates test that a certain property holds for the values in each $g \in G$.
- Numerals are tests of the cardinality of the set of distinct values of some index x in G.

An example

(31) a. Two^x girls saw three^y dogs.


b.
$$[x] \wedge \text{GIRLS}(x) \wedge x = 2 \wedge [y] \wedge \text{DOGS}(y) \wedge y = 3 \wedge \text{SAW}(x, y)$$

The distributive operator

- The distributive operator $\delta_x(\varphi)$ divides up a table with respect to the values of x, evaluates φ on each of these substates in parallel, then gathers up the resulting states.
- (32) a. ... each read a book.
 - b. $\delta_x([y] \land \text{BOOK}(y) \land \text{READ}(y, x))$

From earlier: The proposal in a nutshell

- Dependent indefinites introduce a plurality into a discourse.
- Two components of meaning:
 - Presupposition: the plurality can be divided into subpluralities that vary with respect to the atoms of a licensor.
 - At-issue: each of these subpluralities is of a given cardinality.
- We can now translate these statements into PCDRT.

Substates based on the licensor

• First, an information state is divided up with respect to the values of the licensor. $\{G|_{x=d}(y)\}$ is a set of sets.

(33)
$$G|_{x=d}(y) := \{g(y)|g \in G \& g(x) = d\}$$

• Below, x corresponds to the licensor; y corresponds to the dependent indefinite.

(34) a.
$$G = \begin{array}{ccc} x & y \\ \hline a & e \\ \hline a & f \\ \hline b & g \\ \hline b & h \\ \hline c & i \\ \hline c & j \end{array}$$
 b. $\{G|_{x=d}(y)\} = \{\{e, f\}, \{g, h\}, \{i, j\}\}$

Presupposition of dependency

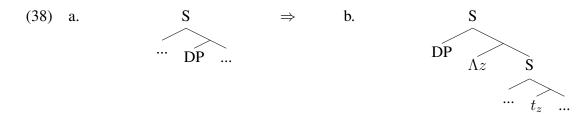
• **Presupposition:** the plurality can be divided into subpluralities that vary with respect to the atoms of a licensor.

(35) **outside**(y/x) > 1 := $\lambda GH.G = H$ & $|\{G|_{x=d}(y)\}| > 1$

• Equivalent to Nouwen's (2003) definition of dependency.

Cardinality assertion

- At-issue: each of these subpluralities is of a given cardinality.
- (36) **inside**(y/x) = n := $\lambda GH.G = H$ & $\forall T \in \{G|_{x=d}(y)\}.|T| = n$


Lexical definition of a dependent indefinite

(37) $\llbracket \text{two-two}_x^y \rrbracket = \lambda NP [y] \land N(y) \land P(y) \land \text{outside}(y/x) > 1 \land \text{inside}(y/x) = 2$

- Note that the two cardinality checkers are evaluated *after* the two predicates are introduced.
 - This allows the cardinality checkers to refer to an index that is introduced by an argument of the dependent indefinite.
 - This is the reflection in my analysis of Henderson's (2014) insight that the plurality condition of a dependent indefinite is somehow 'postsuppositional.'

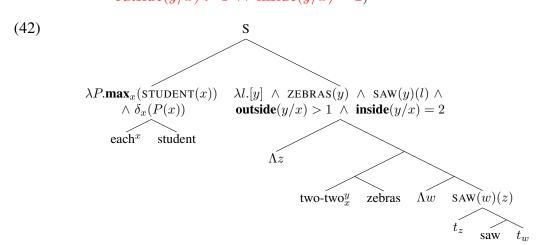
Quantifier raising

• I assume that quantifiers can move by Quantifier Raising (QR).

Example 1

- (39) a. Three^x students saw two-two^y_x zebras.
 - b. $[x] \land \text{STUDENTS}(x) \land [y] \land \text{ZEBRAS}(y) \land \text{SAW}(y)(x) \land \text{inside}(x) = 3 \land \text{outside}(y/x) > 1 \land \text{inside}(y/x) = 2$

. . .


(40)

student ₁	zebra ₁	student ₁ zebra ₁
student ₁	zebra ₂	student ₁ zebra ₂
student ₂	zebra ₁	student ₂ zebra ₃
$student_2$	zebra ₂	student ₂ zebra ₄
student ₃	zebra ₁	student ₃ zebra ₅
student ₃	zebra ₃	student ₃ zebra ₆

Example 2 (unsuccessful derivation)

(41) a. Each^x student saw two-two^y_x zebras.

b.
$$\max_x(\operatorname{STUDENT}(x)) \land \delta_x([y] \land \operatorname{ZEBRAS}(y) \land \operatorname{SAW}(y)(x) \land \operatorname{outside}(y/x) > 1 \land \operatorname{inside}(y/x) = 2)$$

- Observe: the variation condition—i.e., the condition that outside(y/x) > 1—appears inside the distributive scope of δ_x.
 - It is evaluated with respect to a substate of G where x is restricted to a single value.
 - The variation condition cannot be met, and the derivation fails.

Example 2 (successful derivation)

- The dependent indefinite takes scope outside the distributive operator.
- a. Each^x student saw two-two^y zebras. (43)**b.** $[y] \land \text{ZEBRAS}(y) \land \max_x(\text{STUDENT}(x)) \land$ $\delta_x(SAW(y)(x))$ \wedge outside $(y/x) > 1 \wedge$ inside(y/x) = 2(44)S $\lambda P[y] \wedge \text{ZEBRAS}(y) \wedge P(y) \wedge$ $\lambda k. \max_x(\operatorname{STUDENT}(x)) \land$ $outside(y/x) > 1 \land inside(y/x) = 2$ $\delta_x(\mathrm{SAW}(k)(x))$ two-two_x^y zebras Λw student Λz SAW(w)(z) each^x saw t_w
 - The variation condition '**outside**(y/x) > 1' appears after distributive scope has closed, giving it access to the full set of values of x and y.

5 Theoretical payoff: how to take scope

- The essential insight for licensing by *each* comes from Henderson 2014.
 - 1. Dynamically tracking dependency relations with PCDRT.
 - 2. Evaluating the variation condition *after* the distributive scope has closed.
- However, on his analysis, dependent indefinites have the same at-issue content as plain indefinites. (They're not distributive.)
- For Henderson 2014, result is a kind of 'split-scope':
 - At-issue content must scope below the distributive operator.
 - The variation condition must scope above it.

Postsuppositions?

- Henderson: the variation condition is a **postsupposition**. (Brasoveanu 2012)
- Formally, postsuppositions are a special *kind* of meaning. (By analogy with presuppositions.)
 - Instead of being evaluated *in situ*, they are passed through the dynamic system until a later operator triggers their evaluation.

On the other hand:

- The current analysis, with a distributive at-issue component, does not require separation of the two components of meaning; standard QR works, with no need for postsuppositions.
- Further prediction of 'standard scope-taking': sensitivity to scope islands
 - Dependent indefinites are licensed by distributive operators by scoping over them.
 - Thus: ungrammaticality when an island boundary (indicated below with $\langle \cdot \rangle$) intervenes between a dependent indefinite and its potential licensor

Hungarian (p.c. Márta Abrusán, two speakers)

- (45) Minden professzor <u>két-két</u> diákról mondta, hogy meglepné ha (diplomát szereznének). every professor two-two students-of said that surprised if diploma receive 'Every professor said of two students (each) that he would be surprised if they graduated.'
- (46) * Minden professzor azt mondta, hogy meglepné, ha (<u>két-két</u> diák diplomát szerezne).
 every professor DEM said that surprised if two-two student diploma receive
 'Every professor said that he would be surprised if two students (each) graduated.'
 - To my knowledge, not predicted by any other theory.

6 Summary

- I addressed the following architectural questions:
 - 1. Do dependent indefinites have an anaphoric component?
 - 2. Are dependent indefinites quantificational?
- The latter of these turns out to be connected to a third architectural question:
 - 3. Do dependent indefinites see outside of distributive operators via postsuppositions or standard scope?
- My answers were:

Dependent indefinites have an anaphoric component. They are quantificational. They are subject to standard scope.

Appendix A: Full fragment

	Туре		Variables	Example		
	truth value index		i,j,k,l	true, false w, x, y, z		
	entity		d, e	john, mary		
	integers predicate	index \rightarrow proposition	$\substack{n,m\ P,Q,N}$	1,2 left, zebra		
	predicate	ndex – proposition	1, Q, W	LEF I, ZEDKA		
	assignment function	index \rightarrow entity	g,h	$ \begin{array}{c cc} x & y \\ \hline al & eve \end{array} $		
	information state	assign. fn. \rightarrow truth value	G, H	$\begin{array}{c c} x & y \\ \hline al & eve \\ ed & ann \\ \end{array}$		
	proposition	inf. state \rightarrow inf. state \rightarrow truth value	$arphi,\psi$			
(47)	$G(i) := \{g(i) g \in$	$\in G\}$				
(48)	$G _{i=d} := \{g g \in G$	$G \& g(i) = d\}$				
(49)	$g[i]h \Leftrightarrow \text{for any ir}$	ndex j, if $j \neq i$, then $g(j) = h(j)$)			
(50)	$G[i]H \Leftrightarrow \text{for all } g$	$h \in G$, there is a $h \in H$ such that	g[i]h, and	l		
	for all h	$a \in H$, there is a $g \in G$ such that	$\pm g[i]h$			
(51)	$[j] := \lambda GH.G[j]I$	H				
(52)	$\varphi \wedge \psi := \lambda GH. \exists$	$K.\varphi(G)(K) \& \psi(K)(H)$				
(53)	For any <i>n</i> -place predic	ate P with classical logic denota	tion $I(P)$,	,		
	$P(i_1,,i_n) := \lambda i_n$	$GH.G = H \& \forall g \in G.\langle g(i_1), \dots$	$\langle g(i_n)\rangle \in$	I(P)		
(54)	$\delta_i(\varphi) := \lambda GH.G(\varphi)$	$(i) = H(i) \And \forall d \in G(i).\varphi(G _{i=1})$	$_d)(H _{i=d})$			
(55)	$\max_i(\varphi) := \lambda GH$	$H([x] \land \varphi)(G)(H) \& \neg \exists H'.H$	$(x) \subset H'(x)$	$x) \& ([x] \land \varphi)(G)(H')$		
(56)	$\mathbf{inside}(j) = n :=$	$\lambda GH.G = H \& H(j) = n$				
(57)						
(58)	outside $(j/i) > 1$:=	$\lambda GH.G = H \& \{H _{i=d}(j)\}$	>1			
(59)						
	b. $[\![zebras]\!] = \lambda j.ZEB$	RAS(j)				
	c. $\llbracket \text{left} \rrbracket = \lambda j.\text{LEFT}(j)$	i)				
	d. $\llbracket saw \rrbracket = \lambda i j.saw ($	i)(j)				
(60)	$\llbracket \text{three}^{j} \rrbracket = \lambda N P.[j] \land$	$N(j) \wedge P(j) \wedge $ inside $(j) =$	3			
(61)	$ [[\text{two-two}_i^j]] = \lambda NP.[j] \land N(j) \land P(j) \land \text{outside}(j/i) > 1 \land \text{inside}(j/i) = 2 $					
(62)	$\llbracket \operatorname{each}^{i} \rrbracket = \lambda N P. \operatorname{max}_{i}($	$N(i)) \wedge \delta_i(P(i))$				

Acknowledgements

Thanks to audiences at NYU, Institut Jean Nicod, Harvard, Penn, Utrecht, Paris co-distributivity workshop, ESSLLI 2015, GLOW 38, and MACSIM 4. The research leading to these results received funding from the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement N°324115–FRONTSEM (PI: Schlenker). Research was conducted at Institut d'Etudes Cognitives (ENS), which is supported by grants ANR-10-IDEX-0001-02 PSL* and ANR-10-LABX-0087 IEC.

References

- Balusu, R. (2005). Distributive reduplication in Telugu. In Davis, C., Deal, A. R., and Zabbal,
 Y., editors, *Proceedings of the 36th Annual Meeting of the North East Linguistic Society (NELS 36)*, pages 39–53, Amherst, MA. University of Massachusetts GLSA Publications.
- Barker, C. (2007). Parasitic scope. Linguistics and Philosophy, 30(4):407-444.
- Bauman, C., Holliday, N., LaFave, N., Lin, K., Martin, S., and Shapp, A. (2012). Every sentence has how many quantifiers each? binominal *each* in English. In *Mid-Atlantic Colloquium of Studies in Meaning 2*, College Park, MD. University of Maryland.
- Brasoveanu, A. (2006). Structured Nominal and Modal Reference. PhD thesis, Rutgers University.
- Brasoveanu, A. (2011). Sentence-internal *different* as quantifier-internal anaphora. *Linguistics and Philosophy*, 34(2):93–168.
- Brasoveanu, A. (2013). Modified numerals as post-suppositions. *Journal of Semantics*, 30(2):155–209.
- Brasoveanu, A. and Farkas, D. (2011). How indefinites choose their scope. *Linguistics and philosophy*, 34(1):1–55.
- Bumford, D. and Barker, C. (2013). Association with distributivity and the problem of multiple antecedents for singular *different*. *Linguistics and Philosophy*, 36:355–369.
- Champollion, L. (2015). Every boy bought two sausages each: Distributivity and dependent numerals. In Steindl, U., Borer, T., Fang, H., Pardo, A. G., Guekguezian, P., Hsu, B., O'Hara, C., and Ouyang, I. C., editors, *Proceedings of the 32nd West Coast Conference on Formal Linguistics (WCCFL 32)*, pages 103–110, Somerville, MA. Cascadilla Proceedings Project.
- Farkas, D. F. (1997). Dependent indefinites. In Corblin, F., Godard, D., and Marandin, J.-M., editors, *Empirical issues in formal syntax and semantics*, pages 243–268, Bern, Switzerland. Peter Lang.

- Farkas, D. F. (2001). Dependent indefinites and direct scope. In Condoravdi, C. and Renardel, G., editors, *Logical perspectives on language and information*, pages 41–72. CSLI Publications, Palo Alto, CA.
- Farkas, D. F. (2002). Extreme non-specificity in romanian. In Beyssade, C., editor, Romance languages and linguistic theory 2000, pages 127–151. John Benjamins, Amsterdam, Netherlands.
- Gil, D. (1993). Nominal and verbal quantification. *STUF Language Typology and Universals*, 46(4):275–317.
- Groenendijk, J. and Stokhof, M. (1991). Dynamic predicate logic. *Linguistics and Philosophy*, 14(1):39–100.
- Heim, I. (1990). E-type pronouns and donkey anaphora. *Linguistics and Philosophy*, 13(2):137–178.
- Henderson, R. (2014). Dependent indefinites and their post-suppositions. *Semantics and Pragmatics*, 7(6):1–58.
- Kimmelman, V. (2015). Distributive quantification in russian sign language. In *Formal and Experimental Advances in Sign Language Theory*, Barcelona, Spain.
- Lillo-Martin, D. and Klima, E. (1990). Pointing out differences: ASL pronouns in syntactic theory. *Theoretical Issues in Sign Language Research*, 1:191–210.
- Nouwen, R. (2003). *Plural pronominal anaphora in context: Dynamic aspects of quantification*. PhD thesis, Utrecht University, Utrecht, Netherlands.
- Oh, S.-R. (2006). *Plurality markers across languages*. PhD thesis, University of Massachusetts, Amherst, MA.
- Rushiti, B. (2015). Distance-distributivity in albanian: the distributive marker *nga*. Presentation for seminar on co-distributivity.
- Szabolcsi, A. (2010). Quantification. Cambridge University Press, Cambridge, UK.
- van den Berg, M. (1996). Some aspects of the internal structure of discourse: the dynamics of nominal anaphora. PhD thesis, ILLC, Universiteit van Amsterdam.
- Yanovich, I. (2005). Choice-functional series of indefinite pronouns and hamblin semantics. In Proceedings of the 15th Semantics and Linguistic Theory Conference (SALT 15), volume 15, pages 309–326, Ithaca, NY. Cornell University CLC Publications.