Outline

Expressing Permission

William Starr

Department of Philosophy, Cornell University
will.starr@cornell.edu
http://williamstarr.net

(1) Free Choices, Hard Choices

Expressing Permission

3 Conclusion

May 14th, 2016

Free Choices, Hard Choices Expressing Permision Concusion Reaerences
 Free Choice Permission
 Early Statement

Strong Permission and Free Choice

"If we are told that we may do this thing or that thing, we normally understand this to mean that we may do the one thing but also the other thing. The distribution principle, in other words, would seem to be $P(p \vee q) \leftrightarrow P p \& P q$. But this principle goes with a different idea of permittedness from the one which obeys the interdefinition schema $P:=\sim O \sim$. We can call it a notion of strong permission. It is related to possibility (freedom) of choice between alternatives." (von Wright 1968: 4-5)

Free Choices, Hard Choices Expressing Permission Conclusion References
 Free Choice Permission
 In a Concrete Context

Background

Union members need to vote strategically in a committee election. An election of Anderson to the committee and an election of Brady to the committee will promote the interests of the union. It's impossible to say whether both would do them any better than one. Further, only senior members get to vote for two candidates, while junior members get to vote for just one. One representative has the job of telling their very loyal members how they are permitted to vote.

Free Choice Permission

The Narrow Implication

Authoritative labor representative to union members:
(1) a. Members may vote for Anderson or Brady
b. Members may vote for Anderson and members may vote for Brady

Narrow Free Choice Permission (NFC)

May $(A \vee B) \Rightarrow \operatorname{May} A \wedge$ May B

- ' \Rightarrow ': shorthand for 'implication', neutral between semantic consequence and pragmatic implicature
(von Wright 1968: 4-5, Kamp 1973)
- Implication doesn't pass standard cancellation test
(2) Authoritative labor representative:
a. Members may vote for Anderson or Brady
b. \#But members may not vote for $\left\{\begin{array}{l}\text { Anderson } \\ \text { Brady }\end{array}\right\}$
- But implication can be 'defeated'...

William Starr | SALT 26 | UT Austin | Slides: williamstarr.net/salt26.pdf

Free Choices, Hard Choices Expressing Permission Conciusion References.

Free Choice Implication
Defeated by the Ignorant and Rude?

- Ignorance (Kamp 1978: 271)
(3) Authoritative labor representative:
a. Members may vote for Anderson or Brady, but I don't know which
b. \# Members may vote for $\left\{\begin{array}{l}\text { Anderson } \\ \text { Brady }\end{array}\right\}$
- Uncooperativeness (Simons 2005:273)
(4) Authoritative labor representative:
a. Members may vote for Anderson or Brady, but I won't tell you which
b. \# Members may vote for $\left\{\begin{array}{l}\text { Anderson } \\ \text { Brady }\end{array}\right\}$

William Starr | SALT 26 | UT Austin | Slides: williamstarr.net/salt26.pdf

Choices, Hard Choices Expressing Permission Concusion References
 Free Choice Permission
 The Wide Implication

Authoritative labor representative to union members:
(5) a. Members may vote for Anderson or members may vote for Brady
b. Members may vote for Anderson and members may vote for Brady

Wide Free Choice Permission (WFC)

May A \vee May B \Rightarrow May A \wedge May B

- ' \Rightarrow ': shorthand for 'implication', neutral between semantic consequence and pragmatic implicature
(Kamp 1978: 273; Zimmermann 2000; Geurts 2005; Simons 2005)
- Open question how best to capture this

Reduce Wide to Narrow? (Simons 2005: 281-2)

Modal Orthodoxy
 May $=\diamond$

- Reduce WFC to NFC via (ATB) movement?
- May A \vee May B transformed to May $(A \vee B)$
- Major over-generation problems:
(6) Authoritative labor representative:
a. Members may vote for Anderson and members may vote for Brady
b. \# Members may vote for Anderson and Brady
- May A \wedge May B doesn't transform to May ($\mathrm{A} \wedge \mathrm{B}$), despite being formally parallel
- Problematic for many accounts

```
William Starr | SALT 26 | UT Austin | Slides: willimstar..net/salt26.pdf

William Star| | SALT 26 | UT Austin | Slides willimstar.net/salt26.pdf

\section*{Consequence of the Orthodoxy \\ Possibility and Disjunction}

\section*{Fact 1: \(\diamond A \vee \diamond B \nRightarrow \diamond A\) and \(\diamond(A \vee B) \nRightarrow \diamond A\)}
(1) First would require:
- \(\llbracket \diamond A \rrbracket \cup \llbracket \diamond B \rrbracket \subseteq \llbracket \diamond A \rrbracket\)
- But this only holds when \(\llbracket \diamond B \rrbracket=\varnothing\)
(2) Second would require:
- \(\llbracket A \vee B \rrbracket \subseteq \llbracket A \rrbracket\)
- Would hold only when \(\llbracket \mathrm{B} \rrbracket=\varnothing\)
- Orthodoxy doesn't explain NFC or WFC
- Un-orthodoxy: May \((A \vee B)\) is semantically equivalent to May A ^ May B (e.g. Geurts 2005; Simons 2005)

\section*{Orthodox Possible Worlds Semantics}
(1) \(\llbracket \mathrm{A} \rrbracket=\{w \mid w(\mathrm{~A})=1\}\)
(2) \(\llbracket \neg \phi \rrbracket=W-\llbracket \phi \rrbracket\)
(3 \(\llbracket \phi \wedge \psi \rrbracket=\llbracket \phi \rrbracket \cap \llbracket \psi \rrbracket\)
(4) \(\llbracket \phi \vee \psi \rrbracket=\llbracket \phi \rrbracket \cup \llbracket \psi \rrbracket\)
(5 \(\llbracket \diamond \phi \rrbracket=\left\{w \mid \exists w^{\prime}: \in R\left(w, w^{\prime}\right) \& w^{\prime} \in \llbracket \phi \rrbracket\right\}\)
- \(R\left(w, w^{\prime}\right)\) : \(w^{\prime}\) is 'accessible' from \(w\)

Classical Truth and Consequence
Truth \(w \vDash \phi \Longleftrightarrow w \in \llbracket \phi \rrbracket\)
Consequence \(\phi \vDash \psi \Longleftrightarrow \llbracket \phi \rrbracket \subseteq \llbracket \psi \rrbracket\)

\section*{Dual Prohibition \\ Good for the Orthodoxy, Bad for the Un-orthodoxy}

Authoritative labor representative to union members:
(7) a. Members may not vote for Anderson or Brady
b. Members may not vote for Anderson and members may not vote for Brady

\section*{Dual Prohibition (DP)}
\(\neg\) May \((A \vee B) \Rightarrow \neg\) May A \(\wedge \neg\) May B
(Alonso-Ovalle 2006; Fox 2007)
- Orthodox Explanation: \(\neg \diamond(\mathrm{A} \vee \mathrm{B}) \vDash \neg \diamond \mathrm{A} \wedge \neg \diamond \mathrm{B}\)
- More unorthodox semantics or Unorthodox LF/Pragmatics?

\section*{Children's Knowledge of Free Choice Inferences and Scalar Implicatures}

\author{
LYN TIEU \\ École Normale Supérieure
}

JACOPO ROMOLI
University of Ulster
PENG ZHOU
Macquarie University
STEPHEN CRAIN
Macquarie University

\section*{The Dilemma \\ Hard Choices}

\section*{More Unorthodox Semantics}
(1) Aloni (2007)
- Semantic explanation of NFC
- Potential semantic explanation of DP
- No account of WFC
(2) Barker (2010)
- Semantic explanation of NFC
- Pragmatic explanation of DP
- Evidence for pragmatic account of DP holds for NFC
- Problematic account of WFC

3 Aher (2012); Willer (2015)
- Semantic explanation of NFC, DP
- No account of WFC
(8) Authoritative labor representative:
a. Members may vote for Anderson or Brady
b. \# Members may vote for both Anderson and Brady
c. \# Members may not vote for both Anderson and Brady
(Simons 2005; Barker 2010)

\section*{Resource Sensitivity (RS)}
(1) \(\operatorname{May}(A \vee B) \nRightarrow \operatorname{May}(A \wedge B)\)

2 \(\operatorname{May}(A \vee B) \nRightarrow \neg \operatorname{May}(A \wedge B)\)
(9) Authoritative labor representative to union: Members may vote for Anderson or Brady
(10) Every member just voted for Anderson. Senior members are about to cast additional vote: \# Members may vote for Brady
```

Resource Sensitivity (RS)
May (A\veeB) \not=> May (A\wedgeB)
May (A\veeB) \# \negMay (A\wedgeB)
May (A\veeB),A\not=> May B

```

\section*{New Background}

Members need to vote strategically for a two person committee, the only outcome that will promote the union's interests is an Anderson and Brady committee. Neither alone does any good. The ballots have separate bubbles for "Anderson and Brady", "Anderson" and "Brady".
(11) Authoritative labor representative:
a. Members may vote for Anderson and Brady
b. \# Members may vote for \(\left\{\begin{array}{l}\text { Anderson } \\ \text { Brady }\end{array}\right\}\)

\section*{Free Choices, Hard Choices Expressing Permission Conclusion References \\ Resource Sensitivity \\ So Far}

\section*{Resource Sensitivity (RS)}
\[
\begin{aligned}
& \text { May }(A \vee B) \nRightarrow \operatorname{May}(A \wedge B) \\
& M a y(A \vee B) \nRightarrow \neg \operatorname{May}(A \wedge B) \\
& \operatorname{May}(A \vee B), A \nRightarrow \operatorname{May} B \\
& M a y(A \wedge B) \nRightarrow \operatorname{May} A, M a y B
\end{aligned}
\]

\section*{Frree Choices, Hard Choices Expressing Permisision Conclusion Recrences \\ Resource Sensitivity \\ And Back to Strong Permission}

\section*{Newer Background}

Members need to vote for a committee, but all choices serve the union's interests equally well. Further, the union has been criticized for controlling their members too much.

\section*{Free Choices, Hard Choices Expressing Permission Conclusion References}

\section*{Resource Sensitivity}

And Back to von Wright (1968) on Strong Permission
(12) Authoritative labor representative:

We will not be permitting or requiring you to vote for any candidate in this election. Do as you wish!
(13) Paranoid Member:

I've hear you've forbidden voting for Anderson.
(14) Authoritative labor representative:
a. No, it's not the case that members must not vote for Anderson
b. \# No, you may vote for Anderson

\section*{Weak Permission}

What's compatible w/explicit requirements and permissions

\section*{Strong Permission}

Explicitly permitted actions; may be none!

\section*{Resource Sensitivity}

And Strong Permission

Resource Sensitivity (RS)
(1) \(\operatorname{May}(A \vee B) \nRightarrow \operatorname{May}(A \wedge B)\)
(2) \(\operatorname{May}(A \vee B) \nRightarrow \neg \operatorname{May}(A \wedge B)\)
(3) May \((A \vee B), A \nRightarrow\) May \(B\)
(4) May \((A \wedge B) \nRightarrow\) May \(A\), May B
(5) \(\neg\) Must \(\neg A \nRightarrow\) May \(A\)

\section*{Different Starting Point}

Expressing permission involves incrementally building a partial plan of what to do, rather than describing what the fully precise permission facts in some world are.

\section*{Basic Dynamic Semantics}

Just Information (Veltman 1996)

\section*{Orthodox Picture}
- Sentences represent by refer to regions of logical space
- Interpreters use utterances of them to shift to region of logical space within region referred to

Dynamic Semantics (Purely Informational Version)
- Sentences: recipes for moving around logical space
- Atomics: zoom in on a particular region
- Conjunction: apply each recipe in turn
- Disjunction: apply recipes separately; 'merge’ results
- Negation: remove region scope would zoom to

William Star | SALT \(26 \mid\) UT Austin | Slidess: williamstarr.net/satl26. pdf

\section*{The Dynamic Picture \\ In More Detail}

\section*{The Basic Idea}

Assign each \(\phi\) a function \([\phi]\) encoding how it changes \(s\) :
\(s[\phi]=s^{\prime}\left(\right.\) I.e.: \(\left.[\phi](s)=s^{\prime}\right)\)
- \(s\) is a set of worlds

Dynamic Informational Semantics (Veltman 1996)
\[
\begin{aligned}
& \text { (1) } s[\mathrm{~A}]=\{w \in s \mid w(\mathrm{~A})=1\} \\
& \text { (2) } s[\neg \phi]=s-s[\phi] \\
& \text { (3) } s[\phi \wedge \psi]=(s[\phi])[\psi] \\
& \text { (4) } s[\phi \vee \psi]=s[\phi] \cup s[\psi]
\end{aligned}
\]

\section*{William Starr | SALT 26 | UT Austin | Slides: williamstarr.net/salt26.pdf}

\section*{The Dynamic Picture \\ How Atomics Provide Information}

The Dynamic Picture
Deontics Don't Inform, They Motivate!


William Star| | SALT \(26 \mid\) UT Austin | Slidess williamstar net/salt26.pdf
The Attraction of Expressivism
Deontic Claims Don't Describe Preferences, They Express Them

\section*{Expressivist Theses}
(1) Communication: "To express a state of mind is not to say that one is in it" (Gibbard 1986: 473).
(2) Explanation: "The semantic properties of sentences are to be explained, fundamentally, in terms of properties of the attitudes conventionally expressed by utterances of those sentences" (Silk 2014: §1).
(3) Non-representation: The states of mind expressed by sentences are non-representational, and, more specifically, motivational.

\section*{The Dynamic Picture}

Extended to Deontics

\section*{Dynamics of Permissions \(\pi\)}

May \(\phi\) is analyzed dynamically in terms of how it updates requirements/permissions \(\pi\), rather than information \(s\). (Kamp 1973; Lewis 1979; van Rooij 2000)

\section*{Novel Model of \(\pi\)}

A practical frame \(\pi\) consists of:
- \(R_{\pi}\) : requirements, preferences between worlds
- \(P_{\pi}\) : strong permissions, preferences between worlds
- Sentences influence substates \(s^{\pi}:=\langle s, \pi\rangle\)

\section*{Permission Dynamics}

Substates Visualized

Figure: Initial Substate: No Info, Req's or Strong Permissions
- A not strongly permitted, but not forbidden

\section*{Permission Dynamics}

Expressing Permission, Simplified

- May A: test whether A is compatible \(\mathrm{w} / R_{\mathbf{I}^{-}}\)-best worlds
- Yes: create new \(P\) from \(R_{\mathbf{I}}\), w/preference for A-worlds
- No: reduce \(s\) to \(\varnothing\)

William Starr | SALT 26 | UT Austin | Slides: williamstarr.net/salt26.pdf

\section*{Permission Dynamics}

States versus Substates

\section*{States \(S\)}

A state \(S\) is a set of substates \(S=\left\{s_{1}^{\pi_{1}}, \ldots, s_{n}^{\pi_{n}}\right\}\)
- Each \(s_{i}^{\pi_{j}}\) is competing for control of agent's actions and beliefs (Minsky 1985; Brooks 1991)

Dynamic Connective Semantics (Starr 2016)
(1) \(S[\mathrm{~A}]\) : eliminate \(\neg \mathrm{A}\)-worlds from each substate
(2) \(S[\neg \phi]\) : for each substate,
a. Eliminate worlds that would survive update w/ \(\phi\)
b. Remove preferences \(\phi\) would add to I
(3) \(S[\phi \wedge \psi]=(S[\phi])[\psi]\)
(4) \(S[\phi \vee \psi]=S[\phi] \cup S[\psi]\)

\section*{Permission Dynamics}

Expressing Permission, Simplified

- May A : test whether A is compatible \(\mathrm{w} / R_{\mathbf{I}^{-}}\)-best worlds
- Yes: create new \(P\) from \(R_{\mathbf{I}}\), w/preference for A-worlds
- No: reduce \(s\) to \(\varnothing\)

William Starr | SALT 26 | UT Austin | Slides: williamstarr.net/salt26.pdf

\section*{Permission Dynamics}

States Visualized


Figure: Initial State \(\mathbf{0}\)

Disjunction Dynamics
Disjunction Creates Substates


Figure: \(\mathbf{0}[\mathrm{A} \vee \mathrm{B}]\)

\section*{}

\section*{Permission Dynamics}

Expressing Permission also Creates Substates


Figure: \(\mathbf{0}[\) May B]
- May B: \(\forall s^{\pi} \in S\), test whether B is compatible \(\mathrm{w} / R_{\pi}\)-best worlds
- Yes: create new \(P\) from \(R_{\pi}\), w/preference for B -worlds; then union set of new substates with \(S\)
- No: reduce every \(s\) to \(\varnothing\)

Permission Dynamics
Expressing Permission also Creates Substates


Figure: \(\mathbf{0}[\) May A]
- May A: \(\forall s^{\pi} \in S\), test whether A is compatible w/ \(R_{\pi}\)-best worlds
- Yes: create new \(P\) from \(R_{\pi}\), w/preference for A -worlds; then union set of new substates with \(S\)
- No: reduce every \(s\) to \(\varnothing\)

\section*{}


Figure: \(\mathbf{0}[\) May \(\mathrm{A} \vee \mathrm{May} \mathrm{B}]\)

\section*{Towards a Practical Logic}

Support and Consequence (Kamp 1973; Veltman 1996; van Rooij 2000)

\section*{Practical Support ( \(S \| \phi\) )}
\(\phi\) doesn't change any of the \(\pi\) 's at play in \(S\)
- \(S \vDash \phi \Longleftrightarrow \Pi_{S}=\Pi_{S[\phi]}\)
- \(\Pi_{S}=\left\{\pi \mid \exists s \neq \varnothing: s^{\pi} \in S\right\}\)

Practical Consequence \(\left(\phi_{1}, \ldots, \phi_{n} \Vdash \phi\right)\)
After accepting \(\phi_{1}, \ldots, \phi_{n}, \psi\) doesn't change \(\pi\) 's at play
- \(\phi_{1}, \ldots, \phi_{n} \Vdash \psi: \forall S: S\left[\phi_{1}\right] \cdots\left[\phi_{n}\right] \vDash \psi\)


Figure: \(\mathbf{0}[\) May \(A \vee\) May \(B] \Vdash\) May \(A\)

\section*{Explaining Dual Prohibition \\ Expressive Negation!}

\section*{Dual Prohibition (DP)}
\(\neg\) May \((A \vee B) \Rightarrow \neg\) May A \(\wedge \neg\) May B
(Alonso-Ovalle 2006; Fox 2007)
Expressive Negation (Starr 2016)
\(S[\neg \phi]\) : for each substate \(s^{\pi} \in S\),
a. Eliminate worlds that would survive in \(\left\{s^{\pi}\right\}[\phi]\)
b. Remove preference from \(\pi\) that \(\phi\) would add to \(\mathbf{I}\)

Prohibition Dynamics
When Prohibition Fails


Figure: \(\mathbf{0}[\) May A]
- \(0[\) May A \(][\neg\) May A \(]=\) ?

William Starr | SALT 26 | UT Austin | Slides: williamstarr.net/salt26.pdf

Prohibition Dynamics
When Prohibition Fails


Figure: \(\mathbf{0}[\) May A\(][\neg\) May A\(]\)

\section*{Prohibition Dynamics}

When Prohibition Fails


Figure: First Step Toward \(\mathbf{0}[\) May A \(][\neg\) May A \(]\)

\section*{Explaining Dual Prohibition \\ Expressive Negation!}

\section*{Dual Prohibition (DP)}
\(\neg\) May \((A \vee B) \Rightarrow \neg\) May \(A \wedge \neg\) May B
(Alonso-Ovalle 2006; Fox 2007)
- One way to test for this is to see whether just \(\neg\) May \(A \Vdash \neg\) May ( \(\mathrm{A} \vee \mathrm{B}\) )
- That validity would indicate that \(\neg \mathrm{May}(A \vee B)\) has weak reading akin to \(\neg\) May \(A \vee \neg\) May \(B\)
- \(\neg\) May \(A \| \neg\) May \((A \vee B)\) in this system because of expressive negation

\section*{Prohibition Dynamics}

A State that Supports \(\neg\) May A


Figure: \(\neg\) A Required
- Update w/ \(\neg\) May A:
(1) Update state \(\mathrm{w} / \mathrm{May} \mathrm{A}\) fails giving information \(\varnothing\) - \(W-\varnothing=W\)
(2) No A-preferences to remove

\section*{Willam Star| | SALT \(26 \mid\) UT Austin | Slides: willilimstart.net/salt26.pdf}


Figure: Updating state that will support \(\neg \operatorname{May} \mathrm{A} w / \neg \operatorname{May}(A \vee B)\)
- Update w/ \(\neg\) May (A \(\vee B\) ):
(1) Updating state \(\mathrm{w} /\) May \((\mathrm{A} \vee \mathrm{B})\) tests that both alt's are compatible \(\mathrm{w} / \neg \mathrm{A}\left(R_{\mathrm{I}}\right)\)-best worlds
- A-alternative is not
- Giving \(\varnothing\), and \(W-\varnothing=W\), so no effect here...
(2) Remove permissive preferences May \((A \vee B)\) would add
- Namely aB > Ab


Figure: Updating state that will support \(\neg\) May \(\mathrm{A} w / \neg \operatorname{May}(\mathrm{A} \vee \mathrm{B})\)
- Update \(w / \neg\) May \((A \vee B)\) :
(1) Updating state \(w /\) May \((A \vee B)\) tests that both alt's are compatible \(\mathrm{w} / \neg \mathrm{A}\left(R_{\mathrm{I}}\right)\)-best worlds
- A-alternative is not
- Giving \(\varnothing\), and \(W-\varnothing=W\)
(2) Remove permissive preferences May \((\mathrm{A} \vee \mathrm{B})\) would add
- Namely aB > Ab

\section*{Dual Prohibition}

Predicted Semantically
- Key components
(1) Expressive negation
(2) Consequence relation that tracks changes to \(\pi\)
- This semantics thereby predicts:
(1) Non-classical behavior above/below disjunction
(2) Classical behavior re-emerges under negation

\section*{Resource Sensitivity \\ With Fresh Eyes}
```

Resource Sensitivity (RS)
$\operatorname{May}(A \vee B) \nRightarrow \operatorname{May}(A \wedge B)$
(2) $\operatorname{May}(A \vee B) \nRightarrow \neg \operatorname{May}(A \wedge B)$
May $(A \vee B), A \nRightarrow$ May B
May $(A \wedge B) \nRightarrow$ May A, May B
\neg Must $\neg A \nRightarrow$ May A

```

\section*{Conclusion}

What's Done and What's Not-so-done

\section*{Done}
(1) Semantically explain wide and narrow FCP
(2) Semantically explain Dual Prohibition
- Relying crucially on expressive negation and practical consequence
(3) Semantically explain resource sensitivity effects
(4) Sketch of how ignorance/uncooperativity defeat free choice through higher-order uncertainty

\section*{Not Done}
- Account for wide variety of free choice effects in wide variety of constructions bearing no superficial resemblance to permission
- Explanation of but I won't tell you which or but I don't know which follow ups?
- I won't tell you which [permissions hold]
- which picks up on two salient division of substates
- Says only one holds
- Induces convey higher-order uncertainty about what state should be
- \(S=\left\{s_{1}^{\pi_{1}}, \ldots, s_{n}^{\pi_{n}}, s_{1}^{\mathrm{A}\left(\pi_{1}\right)}, \ldots, s_{n}^{\mathrm{A}\left(\pi_{n}\right)}, s_{1}^{\mathrm{B}\left(\pi_{1}\right)}, \ldots, s_{n}^{\mathrm{B}\left(\pi_{n}\right)}\right\}\)
- \(S=\left\{s_{1}^{\pi_{1}}, \ldots, s_{n}^{\pi_{n}}, s_{1}^{\mathrm{A}\left(\pi_{1}\right)}, \ldots, s_{n}^{\mathrm{A}\left(\pi_{n}\right)}\right\} \| \neq\) May B
- \(S=\left\{s_{1}^{\pi_{1}}, \ldots, s_{n}^{\pi_{n}}, s_{1}^{\mathrm{B}\left(\pi_{1}\right)}, \ldots, s_{n}^{\mathrm{B}\left(\pi_{n}\right)}\right\} \| \neq\) May A
- Consequence holds only if it holds on all resolutions of the uncertainty. (Van Fraassen 1966; Stalnaker 1981)

\section*{William Starr | SALT 26 | UT Austin | Slides: williamstarr.net/salt26.pdf}

\section*{位 \\ References I}

Aher, M (2012). 'Free Choice in Deontic Inquisitive Semantics (DIS).' In M Aloni, V Kimmelman, F Roelofsen, GW Sassoon, K Schulz \& M Westera (eds.), Logic, Language and Meaning: 18th Amsterdam Colloquium, Amsterdam, The Netherlands, December 19-21, 2011, Revised Selected Papers, vol. 7218 of Lecture Notes in Computer Science, chap. Free Choice in Deontic Inquisitive Semantics (DIS), 22-31. Berlin: Springer. URL http://dx.doi.org/10.1007/978-3-642-31482-7_3.
Aloni, M (2007). 'Free Choice, Modals and Imperatives.' Natural Language Semantics, 15(1): 65-94. URL
http://dx.doi.org/10.1007/s11050-007-9010-2.
Alonso-Ovalle, L (2006). Disjunction in Alternative Semantics. Ph.D. thesis, UMass Amherst, Amherst, MA. URL
http://semanticsarchive.net/Archive/TVkY2Z1M/.
Asher, N \& Bonevac, D (2005). 'Free Choice Permission Is Strong Permission.' Synthese, 145(3): pp. 303-323. URL
http://www.jstor.org/stable/20118599.
Barker, C (2010). 'Free choice permission as resource-sensitive reasoning.' Semantics and Pragmatics, 3(10): 1-38. URL
http://dx.doi.org/10.3765/sp.3.10

\section*{References II}

\section*{References III}

Brooks, RA (1991). 'Intelligence without Representation.' Artificial Intelligence, 47(1-3): 139-159
Fox, D (2007). 'Free Choice Disjunction and the Theory of Scalar Implicature.' In U Sauerland \& P Stateva (eds.), Presupposition and implicature in compositional semantics, 71-120. New York: Palgrave Macmillan.
Franke, M (2009). Signal to Act: Game Theory in Pragmatics. Ph.D. thesis, ILLC, University of Amsterdam, Amsterdam.
Frege, G (1923). 'Logische Untersuchungen.' Beiträge zur Philosophie des deutschen Idealismus, 3: 36-51. References to Frege (1963).
Frege, G (1963). 'Compound Thoughts.' Mind, 72(285): 1-17. Translation of Frege (1923)., URL http://www.jstor.org/stable/2251920.
Geurts, B (2005). 'Entertaining Alternatives: Disjunctions as Modals.' Natural Language Semantics, 13(4): 383-410. URL http://dx.doi.org/10.1007/s11050-005-2052-4.
Gibbard, A (1986). 'An Expressivistic Theory of Normative Discourse.' Ethics, 96(3): 472-85.
Kamp, H (1973). 'Free Choice Permission.' Proceedings of the Aristotelian Society, 74: 57-74. URL http://www.jstor.org/stable/4544849.

Kamp, H (1978). 'Semantics Versus Pragmatics.' In F Guenthner \& S Schmidt (eds.), Formal Semantics and Pragmatics for Natural Languages, 255-287. Dordrecht: D. Reidel Pub. Co.
Lewis, DK (1979). 'A Problem about Permission.' In E Safrinen, R Hilpinen, I Niniluoto \& MP Hintikka (eds.), Essays in Honour of Jaakko Hintikka. Dordrecht: D. Reidel Pub. Co.
Minsky, M (1985). The Society of Mind. New York: Simon and Schuster.
van Roois, R (2000). 'Permission to Change.' Journal of Semantics, 17(2): 119-143. URL http://dx.doi.org/10.1093/jos/17.2.119.
van Roois, R (2010). 'Conjunctive Interpretation of Disjunction.' Semantics and Pragmatics, 3(11): 1-28. URL http://dx.doi.org/10.3765/sp.3.11.
Silk, A (2014). 'How to Be an Ethical Expressivist.' Philosophy and Phenomenological Research, n/a-n/a. URL http://dx.doi.org/10.1111/phpr. 12138.
Simons, M (2005). 'Dividing things up: The semantics of or and the modal/or interaction.' Natural Language Semantics, 13(3): 271-316. URL http://dx.doi.org/10.1007/s11050-004-2900-7.

\section*{References IV}

\section*{References V}

Stalnaker, RC (1981). 'A Defense of Conditional Excluded Middle.' In WL Harper, R Stalnaker \& G Pearce (eds.), Ifs: Conditionals, Belief, Decision, Chance, and Time, 87-104. Dordrecht: D. Reidel Publishing Co.
Stalnaker, RC (1999). Context and Content: Essays on Intentionality in Speech and Thought. Oxford: Oxford University Press.
Starr, WB (2016). 'Dynamic Expressivism about Deontic Modality.' In N Charlow \& M Chrisman (eds.), Deontic Modality. New York: Oxford University Press.
Van Fraassen, BC (1966). 'Singular Terms, Truth-Value Gaps and Free Logic.' Journal of Philosophy, 3: 481-495.
Veltman, F (1996). 'Defaults in Update Semantics.' Journal of Philosophical Logic, 25(3): 221-261. URL http://dx.doi.org/10.1007/BF00248150.
von Wright, GH (1968). 'Deontic Logic and the Theory of Conditions.' Crítica: Revista Hispanoamericana de Filosofía, 2(6): pp. 3-31. URL http://www.jstor.org/stable/40103910.
Willer, M (2015). 'Simplifying Counterfactuals.' In T Brochhagen, F Roelofsen \& N Theiler (eds.), Proceedings of the 20th Amsterdam Colloquium, 428-437. Amsterdam: ILLC. URL
http://semanticsarchive.net/Archive/mVkOTk2N/AC2015-proceedings.pdf.```

